How Native Background Affects Human Performance in Real-World Visual Object Detection: An Event-Related Potential Study

Abstract

Visual processing refers to the process of perceiving, analyzing, synthesizing, manipulating, transforming, and thinking of visual objects. It is modulated by both stimulus-driven and goal-directed factors and manifested in neural activities that extend from visual cortex to high-level cognitive areas. Extensive body of studies have investigated the neural mechanisms of visual object processing using synthetic or curated visual stimuli. However, synthetic or curated images generally do not accurately reflect the semantic links between objects and their backgrounds, and previous studies have not provided answers to the question of how the native background affects visual target detection. The current study bridged this gap by constructing a stimulus set of natural scenes with two levels of complexity and modulating participants’ attention to actively or passively attend to the background contents. Behaviorally, the decision time was elongated when the background was complex or when the participants’ attention was distracted from the detection task, and the object detection accuracy was decreased when the background was complex. The results of event-related potentials (ERP) analysis explicated the effects of scene complexity and attentional state on the brain responses in occipital and centro-parietal areas, which were suggested to be associated with varied attentional cueing and sensory evidence accumulation effects in different experimental conditions. Our results implied that efficient visual processing of real-world objects may involve a competition process between context and distractors that co-exist in the native background, and extensive attentional cues and fine-grained but semantically irrelevant scene information were perhaps detrimental to real-world object detection.

Publication
Frontiers in Neuroscience
Minghao Dong
Minghao Dong
Professor of Biomedical Engineering

My research interests include intelligent human-computer interaction, brain science and neuroimaging.

Jimin Liang
Jimin Liang
Professor of Electronic Engineering

My research interests include artificial intelligence and computer vision.